

First/Second Semester B.E. Degree Examination, July/August 2021 **Basic Electronics**

Time: 3 hrs.

1

Note: Answer any FIVE full questions.

Max. Marks:100

- Explain the operation of p-n junction Diode under unbiased condition with a neat diagram. a. (08 Marks)
 - In a full wave rectifier, input is from 30 0 30V. The load and R_f are 100Ω and 10Ω b. respectively. Calculate area voltage, efficiency, percentage regulation. (06 Marks)
 - c. Determine I_D , V_1 , V_2 and V_0 for the given circuit.

(06 Marks)

- With a neat diagram and waveforms explain the working of a bridge rectifier. 2 a. (08 Marks)
 - Explain the operation of a zener diode with line regulation and load regulation. (08 Marks) b. For a zener regulator shown in Fig.Q2(c), calculate the range of input voltage for which c.
 - output remain constant. $V_Z = 6.1 V$, $I_{Zmin} = 2.5 m A$, $I_{Zmax} = 25 m A$, $r_Z = 0 \Omega$.

(04 Marks)

- 3 Explain the characteristics of N-channel JFET (Drawn and transfer characteristics). (12 Marks) For a N-channel JFET, $I_{DSS} = 8mA$, $V_P = -5V$. Find : b. | i) I_D @ $V_{GS} = -2V$ and -3V
 - ii) V_{GS} @ $I_D = 3mA$ and 5mA. (06 Marks) (02 Marks)
 - List out classification of FET with symbols. c.
- Draw and explain forward and reverse characteristics of an SCR. 4 (07 Marks) a. Sketch the transfer and drain characteristics for an n-channel depletion – type MOSFET for b. the range of values of $V_{GS} = -6V$ to +1V with $I_{DSS} = 8mA$, $V_P = V_{GS(off)} = -6V$. (08 Marks)
 - With a neat diagram, explain the 2 transistor model of SCR. (05 Marks) c.
- Explain following with respect to OP-Amp. 5 a. i) Virtual ground iii) Slew rate ii) CMRR iv) Offset voltage v) Matched transistors. (10 Marks) b. Derive the expression for output voltage of an
 - i) integrator ii) inverting summing amplifier. With a neat circuit diagram. (10 Marks) 1 of 2

18ELN14/24

6	a.	Explain the ideal characteristics of on op-Amp.	(08 Marks)
	b .	Derive the expression for output voltage of an non inventing amplifier with a f	(OP Marks)
	C	Design an adder circuit using an on-Amp to obtain output expression	(08 Marks)
	υ.	$V_0 = -2(0.1V_1 + 0.5V_2 + 20V_3).$	(04 Marks)
7	a.	Explain the operation of BJT as an amplifier and as a switch.	(10 Marks)
	b.	Draw and explain the operation of a voltage series -ve feedback amplifier and	derive an
		expression for its input impedance.	(10 Marks)
8	a.	Define an oscillator. Explain Brakhausen's criteria for oscillations with block diag	gram.
			(06 Marks)
	b.	Derive the expression for frequency of oscillations of Wien bridge oscillator.	(08 Marks)
	C.	With a neat diagram, explain the working of RC phase shift oscillator.	(06 Marks)
0	я	Subtract (111001) , from (101011) , using 2's complement method	(04 Marks)
,	h.	State and prove Demorgan's theorem for 3 variables	(04 Marks)
	с.	Simplify the following Boolean expression :	(0.1.1.1.1.1.5)
		1) $A + AB = A + B$	
		ii) $\overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y} + X\overline{Y}$	
		iii) $\overline{XY + XYZ + X(Y + X\overline{Y})}$	
		iv) $ABC + ABC + ABC + ABC$	
		v) $\overline{\overline{AB} + ABC} + A(B + A\overline{B})$	
		vi) $AB + \overline{AC} + A\overline{B}C(AB + C)$.	(12 Marks)
1.0			1 10 11
10	a.	With block diagram and truth table, explain the operation of full ladder using 2	half adder.
	b.	Explain the operation NOT, AND and OR gates using analogous switch equival	ent circuit.
			(09 Marks)
	c.	Implement Ex – OR gate using only NOR gate.	(03 Marks)

		2 of 2	
	6	O ´	

2 of 2